Immobilization of Chlamydomonas reinhardtii CLH1 on APTES-Coated Magnetic Iron Oxide Nanoparticles and Its Potential in the Production of Chlorophyll Derivatives.
نویسندگان
چکیده
Recombinant Chlamydomonas reinhardtii chlorophyllase 1 (CrCLH1) that could catalyze chlorophyll hydrolysis to chlorophyllide and phytol in vitro was successfully expressed in Escherichia coli. The recombinant CrCLH1 was immobilized through covalent binding with a cubic (3-aminopropyl) triethoxysilane (APTES) coating on magnetic iron oxide nanoparticles (MIONPs), which led to markedly improved enzyme performance and decreased biocatalyst costs for potential industrial application. The immobilized enzyme exhibited a high immobilization yield (98.99 ± 0.91 mg/g of gel) and a chlorophyllase assay confirmed that the immobilized recombinant CrCLH1 retained enzymatic activity (722.3 ± 50.3 U/g of gel). Biochemical analysis of the immobilized enzyme, compared with the free enzyme, showed higher optimal pH and pH stability for chlorophyll-a hydrolysis in an acidic environment (pH 3-5). In addition, compared with the free enzyme, the immobilized enzyme showed higher activity in chlorophyll-a hydrolysis in a high temperature environment (50-60 °C). Moreover, the immobilized enzyme retained a residual activity of more than 64% of its initial enzyme activity after 14 cycles in a repeated-batch operation. Therefore, APTES-coated MIONP-immobilized recombinant CrCLH1 can be repeatedly used to lower costs and is potentially useful for the industrial production of chlorophyll derivatives.
منابع مشابه
Biosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes
Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...
متن کاملInvestigation of the Synthesis of Chitosan Coated Iron Oxide Nanoparticles under Different Experimental Conditions
Iron oxide (Fe3O4) nanoparticles with average sizes of 10 nm were synthesized by a chemical coprecipitation method in the presence of chitosan. Chitosan as a natural polymer which can be extracted from crustaceans was used in the synthesis process in order to achieve more dispersed nanoparticles. Also, chitosan was used to obtain functionalized magnetic nanoparticles for using in different area...
متن کاملEffects of cadmium chloride as inhibitor on stability and kinetics of immobilized Lactoperoxidase(LPO) on silica-coated magnetite nanoparticles versus free LPO
Objective(s): Enzyme immobilization via nanoparticles is perfectly compatible against the other chemical or biological approximate to improve enzyme functions and stability. In this study lactoperoxidase was immobilized onto silica-coated magnetite nanoparticles to improve enzyme properties in the presence of cadmium chloride as an inhibitor. Materials and Methods: The process consists of the ...
متن کاملEvaluation of Antibacterial Properties of Magnetic Iron Oxide Nanoparticles Synthesized using Echinops Persicus Extract Coated with Chloramphenicol
Introduction: The use of plants is one of the most effective methods for the synthesis of nanoparticles based on green chemistry. The magnetic properties of nanoparticles let the attached drugs conduct by a magnetic field in the body. This study aimed to use the magnetic iron oxide nanoparticles synthesized via green chemistry as a carrier for the chloramphenicol drug delivery system. Materi...
متن کاملSynthesis and Cytotoxicity Assessment of Gold-coated Magnetic Iron Oxide Nanoparticles
Introduction: One class of magnetic nanoparticles is magnetic iron oxide nanoparticles (MIONs) which has been widely offered due to of their many advantages. Owing to the extensive application of MIONs in biomedicine, before they can be used in vivo, their cytotoxicity have to be investigated. Therefore, there is an urgent need for understanding the potential risks associated with MIONs.Materia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 21 8 شماره
صفحات -
تاریخ انتشار 2016